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1. INTRODUCTION AND BACKGROUND

Recently, Maffei' has reported results of Monte Carlo computer calculations

of the trajectories of electrons of fixed energy in the magnetic cusp geometry

of a truncated cube Polywell" device. These showed large loss rates, much

greater than estimated2 on the basis of the usual theory of cusp loss. In this

note we perform simple calculations which explain the results of the Monte Carlo

calculation.

It is important to recognize the limited relevance of the Monte Carlo

single particle calculations to the Polywell T" confinement concept; cusp

coifinement is dominated by collective effects (Berkowitz et al., Proc. 2nd Intl.

Conf. on the Peaceful Uses of Atomic Energy, 1958). The configuration is

unstable to inward collapse, and particles which in a single particle picture

would be lost by adiabatic invariant arguments in fact are reflected inwards by

the magnetic field as modified by the collective effects of the confined high

P plasma. Even in terms of single particle loss, the basic problem addressed

by the Monte Carlo calculations neglected internal electric fields.

However, since these computer simulations are applicable to early time

behavior of the Polywell" experiments, when a low density electron gas may be

the dominant component of the plasma, it is instructive to examine them in the

light of a model of a single particle loss which is developed in the body of this

note; the model can includl some phenomena neglected in the Monte Carlo

calculation, such as the effect of internal electric potential wells.

The approach taken here is to proceed from a relatively simple model to

a more complex description, examining each one in turn. The first model relates

to the computer calculations of Maffei,' in which electrons of constant energy



are reflected by cusp mirror magnetic fields on the faces of a truncated cube,

but no electric field is present. The analytic model invoked here for this

system analyzes a single face cusp of a truncated cube configuration as

representative of the complete polyhedral pattern. Electron reflection

coefficients, losses and other features and characteristics of this single-face

model are found to give good agreement with the results of the Monte Carlo

calculation;' conditions for low loss rates are indicated. These analyses are

all limited to single particle behavior, the basic cusp "mirror reflection" (MR)

mode of electron confinement.

These results are then compared with the much lower losses generally

expected in a cusp filled with plasma, where collective effects determine the

field structure and the loss rates. This case can be visualized by treating

the cusp as a perforated sphere; we call the result the "wiffle bal1" (WB) model.

Finally, we include a radial varying electric field to calculate single particle

confinement in combined magnetic and electric geometries, in comparison with the

simple MR and WB leakage models used earlier.
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2. THE WIFFLE BALL (MB) MODEL OF CUSP CONFINEMENT

In the standard theory of cusp confinement, the collective effect of the

confined high P plasma excludes the magnetic field from the interior of the cusp,

with a well defined sheath of # - I and B - constant separating the higher field

exterior from the interior. Particles are assumed to reflect many times from

this interface, until they find themselves moving almost parallel to the magnetic

field. The particle loss is estimated by a "wiffle-ball" (WB) model, in which

particle losses are calculated simply by taking the ratio fc of the total area

of "holes" of gyromagnetic radius rg on the device quasi-spherical surface of

radius R, due to N cusps, to the total surface area of the system. The

probability of loss of any one particle that reaches this surface is then simply

the ratio

fc - (N/4)(rg/R) 2  (1)

and the probability of reflection (instead of loss) is given by the "reflection

coefficient"

RW l (1 . f) (2)

The total number of suripe collisions nref1 by a single particle is the

system "current recirculation ratio', 3 previously defined' as Gi, for electrons.

Thus

nref; - (0 - fc)/fc - G - Rw/(I - Rw) (3)
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The gyroradius rge of an electron with mass me, velocity v, energy Ek, is,

rge - mevc/eB - (2meC 2Ek) 0'5 /(eB)

(3.37/)0.5 (cm, Gauss, eV) (4)
w

which gives the escape fraction as

fc 2.83(Ew/B2) N/R2  (5)
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3. MIRROR REFLECTION (MR) MODEL FOR SINGLE PARTICLE CONFINEMENT

Consider classical mirror confinement of a charged particle in a

time-independent but slowly space-varying (on a gyroradius space scale) magnetic

field of cusp geometry, with no external electric fields. The magnetic moment

of a charged particle in a magnetic field is defined as6

u-IA/c (6)

Here I is the current due to gyromagnetic rotation about the field lines, and

A iT the area bounded by the current path, given by

A- w r2  (7)

Take z as the direction transverse to the B field, and r as the direction

along the field. These definitions correspond to the usual conventions employed

in the spatial description of the Polywell T
M device, where r is the radial

position from the system center, and z is (here) the distance from any given cusp

axis. Then, in fields which vary slowly over the gyroradius of the particle,

so that

rg Vz(lnB) << 1 to, (8)

the magnetic moment for singly charged particles (Z - 1) becomes

p - mv2/2B , (9)
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where vz is the particle speed transverse (perpendicular) to the B field. Now

the force acting on a particle to retard its motion towards regions of higher

field is just 7

Fm- - VrB - m(dvr/dt) (10)

where it has been assumed that the variation of B with r is slow. Multiplying

by vr gives

(d/dt)(mv./2) m - A(dB/dt)

Since the total kinetic energy of each particle is invariant in a

collisionless system,

Ek - (m/2)(vr + v2) - constant (12)

it is evident from Eqs. (9), (11), and (12) that

(d/dt)(AB) - A(dB/dt) (13)

thus i is a constant of the motion to lowest order in dB/dr. From this it

follows, from Eq. (12), thalm

(mvW/2) = Ek - IB (14)
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so that the particle will be reflected (i.e., vr will become zero) at the

position (r) along the magnetic field at which the field magnitude reaches a

value B(r) - (Ek/u) - B.. Thus all particles with (Ek/s) < Bm will be reflected

by the B field and will be "trapped' in the mirror system, so long as & remains

constant.

The reflection coefficient Rm for such trapping of a single particle is

just the ratio of particle total kinetic energy to its transverse kinetic energy

at r - ro, which is its initial point of entry into the mirror B field at which

point the field strength is Bo; thus

Rm a Ek/Ez(ro) (15)

This can be determined readily by noting that the transverse energy of the

particle is just (mv2/2) - Ek sin2 8(r) where O(r) is the angle between the total

velocity vector and the local B field. Following Spitzer, 7 since A -

(mv2/2)/B(r) is a constant of the particle motion, it follows that AB(r) - Ek

sin 2f(r), thus

PBr.sin2Or(16)

o sin 0 0

where o is the velocity vector angle of the particle with the field at its

initial (low-field) position at r - ro, B - Bo. Reflection will occur at B(r)

- Bm when sin2 (r) - 1 (i.e., when all velocity is transverse), thus the

reflection condition is sin2 so > (80 /6m), for any given particle with initial

velocity vector angle Do.
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Now, the reflection coefficient for a collection of particles with

distributed velocity vectors is just the ratio of the number of particles

directed towards the high field region, with velocity vectors that satisfy the

reflection condition, above, to the total number of particles of all velocity

vectors within the mirror field. For Isotropic velocity vector distribution,

the number of particles per unit solid angle is just dn - dQ, where the unit

solid angle is dD - 2w sinOdO. Thus, the reflection coefficient R for the

collection of particles is

max max
R.f dO/ f dO , (17)

01 eo

where sin$1 - (Bo/Bm) 0 5 . This reflection coefficient is analogous to that

defined in Eqs. (2)-(3), and is important for assessment of electron leakage in

PolywellTM systems.

Integration of Eq. (17) over half-space (8max - it/2) yields, by symmetry,

the reflection and loss coefficients for the simple biconic cusp (two cusps)

magnetic mirror system as

R2 - (1 - Bo/Bm) 1 / 2  L I - R2  (18)

which is independent of the Mocity distribution so long as the velocity vectors

are isotropic.

The PolywellT' systems of interest here are of course not biconic, and the

transmission coefficient in Eq. (18) must be multiplied by N/2, where N is the

number of cusps, giving
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RN - 1- LN 1N ' (N/2)[1 - (1- Bo/Bm) 1/2 • (19)

In the context of the actual Polywell• experiment, we note that cusp loss

may in fact be substantially reduced by the use of electrostatic repeller plates

in the throat of the cusp. In any such cusp system the particle losses will

arise from particles whose velocity vectors lie below the angle 01; i.e., those

pointed generally along the cusp axis. If the central region around this axis

is plugged with a plate charged sufficiently negatively to reflect particles

which would otherwise escape, the reflection coefficient will be further

increased. Assume that such a "repeller" plate is located at an angular position

0, and that a fraction fr of the particles is reflected by this plate. Then the

net reflection coefficient will be modified by addition of a term

eI

fr f dQ
#0

to the numerator of Eq. (17). With this, and limiting integration to emax as

given by Eq. (19), the net reflection coefficient including repellers would be

R- 1 - (1 - fr)(N/ 2 )[1 - (1 - Bo/Bm)l 12] . (20)

In all of these calculations of R and L it is assumed that the number of

cusps N is sufficiently small that their solid angle does not enter the loss cone

of the adjacent cusp, i.e., that R and L are less than one.
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In order to make use of these results, it is necessary to know the value

of Bo, the minimum field from which the particles start their (radial) adiabatic

path towards the maximum cusp field. In geometry of the Polywell'a concept the

field modulus tends to vary as (r/R)mb where mb - 2 for tetrahedral fields, mb

- 3 for a truncated cube system, mb - 4 for the next higher polyhedral

configuration, etc. 8 Taking

B(r) - Bm(r/R)mb (21)

in Eq. (20) and assuming that Bm >> Bo gives the mirror reflection model result

RMR - 1 - (N/4)(ro/R)mb (22)

where 8(r) - B0 at r - r0 and fr is neglected hereafter. Here r0 is the minimum

radial position at which this model can be thought to apply; i.e., for which the

adiabaticity condition (see Eqs. 8,9) is satisfied so that p - constant. A

condition for this is that the gyroradius of the particle calculated from the

field at r0 be less than LB 0 (Vr InB)"1 . This condition yields

ro mb+1 rn
4 -) (23)

where rg - ve/(eB./mc). The'oss rate is

S1 W )mb/l+mb (24)
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4. COMPARISON OF WIFFLE-BALL (lB) AND MIRROR REFLECTION (MR) LOSSES

The leaky-perforated-sphere or nwiffle-ball" (WB) model of the system has

been discussed above. Various earlier experimental and theoretical studies9"'11"

have supported this model for the conditions expected in the real system, where

collective effects dominate confinement. Losses in the WB model result in a

reflection coefficient, from Eqs. (1)-(2) of

Rw- - (N/4)(rg/R) 2  (25)

and'a loss rate

LWB ' (e) (26)

where rg is the electron gyroradius in the cusp (maximum) surface field.

To compare the loss from the MR single particle calculation and the WB high

Scusp calculation, we calculate the ratio of the loss rate, 1 - R, in Eq. (24)

to that in Eq. (26)

LMR R )2+mb/l+mb I mb/I+mb (27)

r- (0)wB"b+-

Thus classical mirror reflection will always lead to greater losses than with

the wiffle ball model, since the gyroradii is less than the system radius (i.e.,

rg/R < 1).

11



The computer studies of Maffei, 1 previously mentioned, all showed the

behavior outlined above. The agreement between this simple model and the

calculations is quite good. This comparison will be described in a separate

report.
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5. ELECTRIC FIELDS AND RECIRCULATION IN THE MR MODEL

In an actual system the electrons do not have constant kinetic energy

because they are moving in an electrostatic potential well, but their total

energy--potential plus kinetic--will remain constant (absent collisions). The

MR analyses can be extended to encompass this ccndition by inclusion of the

electric potential 0 in the expression for total energy, thus

Ek + qO - (m/ 2 )(vr + v2) + q0 - constant - q~0 (G + a) (28)

replaces Eq. (12), previously. Here q is the charge on the particle, and a is

a constant which relates the relative size of the maximum potential energy and

the total energy. The potential 0 is defined by

0(r) - 011 - (r/R)me, (29)

where 0o is the well depth and is taken of negative sign, and me is the exponent

of the power law equation describing the potential radial variation.

Now, the force equation is just that from Eq. (10) for mirror reflection,

with a term added to account for the force due to the gradient of the electric

potential, from Eq. (29). Thus,

F is VrB q Vr- m(dVr/dt) (30)

Reducing terms as before, it is easily shown that p remains a constant of the

motion. This is obvious since the addition of an electric field does not affect

13



particle motion transverse to the B field lines, but acts only in the radial

direction.

The reflection coefficient here can be obtained in the same manner as

before (e.g., Eqs. 16-20), leading to

sin2 e1 - (1 + a)(ro/R)mb/[a + (ro/R)me] (31)

where all electrons originating at ro with 9 > 81 will be trapped by mirror

reflection at or before they reach the radial position r - R, which leads to

Re - 1 - (N/4)(I + a)(ro/R)mb/[a + (ro/R) me (32)

This reflection coefficient is related to the electron recirculation factor

Gj, previously defined, 2 by

G. - 1/(1 - Re) or Re - (Gj - 1)/Gj (33)

Using Eq. (32), this becomes

G a + (ro/R)me 4 (34)(I + *l(ro/R)mb 0 "134

As an example take me a mb- 3 , b fr 0, N - 14, and <r 0> - 1/10, which

represents the present HEPS experimental parameters. Then the electron current

"gain" is

14



Gjm 2.8 x 102 a (35)

Earlier studies4'I2 determined that G of tens of thousands would be required for

energy gain in the system. Thus the single particle limit, with any reasonable

magnetic field strength, would be much too lossy for a reactor. This is no

surprise. Indeed, the reason for the Polywell" geometry is because cusp losses

are orders of magnitude reduced from MR model losses. It is however worth asking

whether single particle losses during startup will place too great a strain on

the electron injection system. This is calculated in the next section.
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6. ELECTRON CURRENT LIMITS

From the electron recirculation factor (Eq. 35), it is possible to estimate

the electron current required to balance electron losses in the low density phase

of startup, when the MR calculation is presumably valid. To do this, note that

the electron lifetime in the system is just the transit time across the device,

multiplied by the recirculation factor, thus -

tlife 6 ttran (GJ) (36)

where ttran is defined as an electron transit time averaged over the electron

distribution, typically of order R/vinj.

The rate of loss Le is the total number of electrons divided by the

lifetime, and must be made up by injection of a total electron current Ie, thus

Le - Ntot/tlife - (4w R3 )ne/3tlife - Ie/q (37)

where n e is the average electron density. This can be expressed, roughly, in

terms of potential well depth from Poisson's equation,

eo - 2w (n e)(eR) 2 (38)

With this, the average density can be determined from Eq. (38) and the injection

current can be written in terms of the injection energy, from Eq. (37) together

with the definition of e, as
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P40 1O10
0e 3 ttran G (1 + (39)

for 0o in Volts, current in amps, and G taken from Eq. (34).

As an example consider the case of maximum required current, where a - 0
and G -. 1. Then the maximum electron-only current to maintain the potential

well is given by

e- 3.11 x 10" 13 0oVinj (40)

foy"o 0in Volts and vinj in cm/sec. If 0o * 105 V and Vinj - 1.3 x 1010 cm/sec,
then the limiting current is Ie - 404 amps. This indicates that only a modest

current is required during the low density startup phase to balance single

particle losses, even without repellers.

In conclusion, we recognize that computer code calculations are essential

to help understand these complicated systems. The analyses above show some of

the general features of these devices; however, particularly because of their

neglect of collective effects, they are only indicative of the behavioral

features of the system, and even then only in the parameter range where they

apply. It is both significant and encouraging that no critical limitations to

machine operation have yet been found from these fundamental analytic studies.
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